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Abstract
The evolution operator of a discrete-time quantum walk involves a conditional
shift in position space which entangles the ‘coin’ and position degrees of
freedom of the walker. After several steps, the coin-position entanglement
(CPE) converges to a well-defined value which depends on the initial state.
In this work we provide an analytical method which allows for the exact
calculation of the asymptotic reduced density operator and the corresponding
CPE for a discrete-time quantum walk on a two-dimensional lattice. We use
the von Neumann entropy of the reduced density operator as an entanglement
measure. The method is applied to the case of a Hadamard walk for which
the dependence of the resulting CPE on initial conditions is obtained. Initial
states leading to the maximum or minimum CPE are identified and the relation
between the coin or position entanglement present in the initial state of the
walker and the final level of CPE is discussed. The CPE obtained from
separable initial states satisfies an additivity property in terms of CPE of the
corresponding one-dimensional cases. Non-local initial conditions are also
considered and we find that the extreme case of an initial uniform position
distribution leads to the largest CPE variation.

PACS numbers: 03.67.−a, 03.67.Mn, 03.65.Ud

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The quantum walk (QW) is a reversible process usually introduced as a quantum analog of
a Markovian process [1]. Several QW-based algorithms for meaningful problems have been
developed [2–7] and they perform better than the best classical alternatives. In some cases,
exponential speedups may be obtained [8–10]. There are two versions of QW, based on
discrete time [11] or continuous time [12]. Both have similar dynamical properties and the
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latter can be obtained by a suitable limiting process from the discrete-time walk [13, 14]. A
second level of classification is based on the network over which the walk takes place. The
QW on a linear chain is the simplest possible configuration [11, 15–17], but other topologies
such as cycles [18, 19], 2D lattices [20–24], or n-dimensional hypercubes [25, 26] have also
been investigated.

Certain aspects of the QW have been reproduced using optical analogies [27, 28]. The
discrete-time versions of a QW require an auxiliary ‘coin’ subspace HC . The evolution in
the position subspace, HP , consists of a conditional shift determined by the amplitudes of the
states in HC . The Hilbert space of the system is H = HC ⊗ HP . Many QW applications
involve partial measurements or noise events which selectively affect a part of the system
(frequently, either the coin or position subspaces). The way the system is affected depends
on the degree of entanglement between the coin and position just before the event. A precise
knowledge of this entanglement is required to gain control over the long-time behavior of the
system, including the way it responds to partial measurements or selective noise events. It has
also been recently suggested that the QW protocol may be useful as an entanglement generator
in two-body [29] or even in many-body systems [30].

In a QW, the conditional shift operation generates the entanglement between the coin
and position (CPE) degrees of freedom of the walker. After several steps, it converges to
a well-defined value which, for a given evolution operator, is determined by the initial state
[21]. For a 1D (Hadamard) QW, the dependence of coin-position entanglement (CPE) on the
initial state has been characterized using analytical methods [31]. However, most algorithmic
applications require higher dimensions. Furthermore, higher dimensional QW’s allow the
preparation of initially entangled states within the position subspace (PPE).

This paper deals with the characterization of long-time CPE in a 2D discrete-time QW,
such as the one used in recent algorithmic proposals [4, 7]. This system describes the motion
of a quantum walker on a 2D lattice or, alternatively, of two independent walkers along linear
lattices. Our approach provides exact results for the 2D QW with arbitrary initial conditions
and coin operations. We provide several examples for a 2D Hadamard QW.

Any real implementation of a quantum system must deal with the issue of decoherence,
which tends to destroy quantum correlations. The entanglement decay due to noise has been
numerically investigated in 1D systems [32] and there are many papers on the important
subject of decoherent QW, see [33] for a recent review. In this work, we restrict our attention
to a coherent QW on two dimensions and obtain the dependence of the asymptotic CPE on
the initial coin state for local and non-local initial positions. In particular, we show that the
non-local case can be easily obtained from the local case by adding a weight factor to the final
integration.

This work is organized as follows. Section 2 defines the 2D QW and provides the required
formalism in the Fourier space leading to the long-time reduced density operator for arbitrary
coin operations and initial states. In section 3, the method is applied to obtain the asymptotic
CPE entanglement of a 2D Hadamard walk as a function of several families of initial states.
This section includes a discussion on the additivity of CPE for separable cases. Finally, in
section 4, we summarize our results and present our conclusions.

2. Asymptotic entanglement

The 2D QW is defined in terms of a discrete lattice whose sites are labeled by pairs of integers
(x, y). One can think in terms of two particles moving along two lines or of a single particle
moving on a plane. For definiteness, in this work we adopt the language of a single particle
moving on a 2D lattice. The set of orthonormal states {|x, y〉} spans the position subspace,
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HP , of the walker. The ‘coin’ degree of freedom is represented by a two-qubit space, HC ,
spanned by four orthonormal states which we label as {|L,L〉, |L,R〉, |R,L〉, |R,R〉}. This
nomenclature is motivated by the QW on a line, where |L〉 and |R〉 are associated with left or
right displacements, respectively.

The Hilbert space for the system is H = HP ⊗ HC . A generic state is

|�〉 =
∑
x,y

4∑
j=1

fj (x, y) |x, y〉 ⊗ |j 〉, (1)

where the first sum runs over all lattice sites and we used a compact notation (|j 〉, j = 1–4)
for the coin states {|L,L〉, |L,R〉, |R,L〉, |R,R〉}. One step of the evolution is described by

|�(n + 1)〉 = U |�(n)〉, (2)

where n is a step counter and the evolution operator is

U = S · (IP ⊗ UC), (3)

with IP the identity operator in HP . The evolution combines a unitary coin operation UC in
HC with a shift operator

S =
∑
x,y

[|x − 1, y〉〈x, y| ⊗ |1〉〈1| + |x, y + 1〉〈x, y| ⊗ |2〉〈2|

+ |x, y − 1〉〈x, y| ⊗ |3〉〈3| + |x + 1, y〉〈x, y| ⊗ |4〉〈4|] , (4)

which performs the conditional displacements determined by the coin state. The
correspondence between coin states and displacements is not unique. The shift operator
defined in equation (4) represents the extension of a 1D walk to two dimensions in a 45◦ rotated
lattice. This choice for S simplifies the description in the Fourier representation, without loss
of generality. Each spatial component of the wavevector, |ψx,y〉 = ∑4

j=1 fj (x, y)|j 〉, evolves
as

|ψx,y(n + 1)〉 = M1|ψx+1,y(n)〉 + M2|ψx,y−1(n)〉 + M3|ψx,y+1(n)〉 + M4|ψx−1,y(n)〉
in terms of operators Mi = ∑4

j=1 Ci,j |i〉〈j |. Ci,j are the matrix elements of the coin operation
UC.

The Fourier transform, as first noted in this context by Nayak and Vishwanath [11], is
extremely useful when single-step displacements are involved because the evolution operator
is diagonal in k-space. The Fourier transform of the position eigenstates is

|k〉 ≡ |kx, ky〉 =
∑

r

eik·r|r〉, (5)

where r is the vector with integer components (x, y) and k is a vector with real components
(kx, ky) in the interval [−π, π ]. The kth component of the wavevector, equation (1), is

|ψk〉 ≡
4∑

j=1

f̃ j (k) |j 〉 (6)

having amplitudes f̃ j (k) ≡ ∑
r e−ik·rfj (r). As mentioned before, the linear map in

equation (2) can be expressed as the action of a diagonal operator Uk in k-space

|ψk(n + 1)〉 = Uk|ψk(n)〉 = (e−ikx M1 + eiky M2 + e−iky M3 + eikx M4)|ψk(n)〉
which is represented by a 4×4 matrix. The basic idea behind our approach is to use the spectral
decomposition of Uk to obtain information about the long-time evolution of the system.
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Let us consider the eigenproblem for the unitary operator Uk with eigenvalues eiωk and
corresponding normalized eigenvectors

|e(ωk)〉 =
4∑

j=1

αj (ωk) |j 〉. (7)

Using the spectral decomposition for Uk, the state of the system after n steps is

|ψk(n)〉 = Un
k |ψk(0)〉 =

∑
{ωk}

eiωknF (ωk) |e(ωk)〉, (8)

where the sum is over the set of eigenvalues of Uk and

F(ωk) ≡ 〈e(ωk)|ψk(0)〉 =
4∑

j=1

α∗
j (ωk) f̃ j (k). (9)

Note that f̃ j (k) are the Fourier–transformed initial amplitudes, so F(ωk) contains all the
information about the initial state.

Since we deal with pure states only, we use the von Neumann entropy of the reduced
density operator, or the entropy of entanglement, defined as

E ≡ −trace(ρc log2 ρc) (10)

as a measure of the coin-position entanglement (CPE). In this expression, ρc = traceP (ρ) is
the reduced density operator obtained from ρ = Unρ0U

† n by tracing out the position degrees
of freedom. Since ρc has dimension 4, this quantity is E ∈ [0, 2], i.e. E = 0 for a product
state and E = 2, for a maximally entangled state. For a QW on a line, ρc is 2D and E ∈ [0, 1]
and for ρc with dimension d, E is in the interval [0, log2 d].

The inverse Fourier transform required to generate ρ at arbitrary times cannot be computed
exactly, but since our main interest is to obtain the entropy of entanglement, we can avoid this
issue by using Parseval’s theorem. The reduced density operator, ρc, is obtained by taking the
trace in k-space of the density operator

ρc = traceK (ρ) =
∫

d2k
4π2

|ψk〉〈ψk|, (11)

where traceK (·) traces over (kx, ky) and the integration in d2k = dky dkx has limits [−π, π ].
This expression can be evaluated after many steps of the evolution in a form completely
analogous to the one used in [31] for a QW on the line. From equation (8), after n steps,

|ψk〉〈ψk| =
∑

{ωk,ω
′
k}

ei(ωk−ω′
k)n F (ωk)F

∗(ω′
k) |e(ωk)〉〈e(ω′

k)|.

In the asymptotic limit n 
 1, according to the stationary phase theorem, only terms with
ωk = ω′

k contribute to equation (11) as discussed in detail in [11]. Thus,

ρ̂c =
∫

d2k
4π2

∑
{ωk}

|F(ωk)|2 |e(ωk)〉〈e(ωk)|, (12)

where we use a caret (̂ ) to indicate that the asymptotic limit has been taken, i.e. ρ̂c ≡
limn→∞ ρc(n). According to equation (7), the matrix elements of ρ̂c are

〈i|ρ̂c|j 〉 =
∫

d2k
4π2

Pi,j (k) (13)

in terms of

Pi,j (k) ≡
∑
{ωk}

|F(ωk)|2 αi(ωk)α
∗
j (ωk). (14)
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Note that these expressions satisfy Pi,j = P∗
i,j , as required by the hermiticity of ρ̂c.

At this point we need to specify the form of the initial state. Since the main interest of
this work is to characterize the long-time CPE generated by the evolution of the QW, we shall
consider only separable coin-position initial states, i.e.

|�(0)〉 = |ψ〉 ⊗ |χ〉, (15)

with the initial position |ψ〉 = ∑
r a(r)|r〉 and initial coin |χ〉 = ∑

j cj |j 〉. These states have
no CPE and fj (r) = cj a(r) in equation (1), so that their k-component is

|ψk(0)〉 = ã(k) |χ〉, (16)

in terms of the Fourier-transformed initial amplitudes ã(k) ≡ ∑
r e−ik·ra(r). From

equation (9) one readily obtains for this kind of initial conditions,

|F(ωk)|2 = |ã(k)|2
∑
j,l

α∗
j (ωk)αl(ωk) cj c

∗
l . (17)

From this expression for a given coin operation and initial state one can obtain ρ̂c and, after
diagonalization, the entropy of entanglement E, from equation (10). Thus, the dependence on
the initial conditions of the CPE generated by the evolution after many steps can be explored
using this method. We emphasize that it can be generalized in a straightforward form to
arbitrary dimensions and coin operations UC, as long as one is able to solve the eigenproblem
for Uk analytically.

3. Dependence on the initial state

In order to discuss the dependence of CPE on the initial state, we must specify a coin operation.
We shall consider the case of a 2D Hadamard walk. When applied to the basis states of a single
qubit, a Hadamard operation generates the balanced superpositions H |L〉 = (|L〉 + |R〉)/√2
and H |R〉 = (|L〉 − |R〉)/√2. This coin operation is a common choice in the literature of 1D
QW [11, 15, 34] and information on the asymptotic CPE level is available for this case [21,
31]. Our method is also applicable to other cases of interest, such as the Grover or DFT coin
operations [21].

For a QW in two-spatial dimensions the coin operation UC = H ⊗H is a natural extension
of the Hadamard walk on a line. In this section, we apply the general formalism previously
outlined in the previous section to this case and characterize the asymptotic CPE level for
several initial conditions.

From equation (2), the explicit form for the operator Uk for UC = H ⊗ H is

Uk = 1

2

⎛
⎜⎜⎝

e−ikx e−ikx

eiky −eiky

e−ikx e−ikx

eiky −eiky

e−iky e−iky

eikx −eikx

−e−iky −e−iky

−eikx eikx

⎞
⎟⎟⎠ . (18)

The eigenproblem for this operator can be solved exactly. Its four eigenvalues are
{eiω+ , e−iω+ , eiω− , e−iω−} with

cos ω± = 1
4 (cos kx − cos ky ±

√
	k),

(19)
	k ≡ cos2 kx + 6 cos kx cos ky + cos2 ky + 8.

As usual, we shall refer to the phase of any of these eigenvalues by the symbol ωk . The
normalized eigenvectors are of the form (7) with components

5
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α1 = 1

N
[1 − e2iωk ]

α2 = 1

N
[−1 + eiωk (eikx − eiky ) + e2iωk ei(kx+ky)]

(20)
α3 = 1

N
[−1 + eiωk (eikx − e−iky ) + e2iωk ei(kx−ky)]

α4 = 1

N
[1 + eiωk (eiky + e−iky ) + e2iωk (1 − ei(kx+ky) − ei(kx−ky)) − 2e3iωk eikx ].

The normalization constant is N = 1
/∑4

j=1 |αj |2.

3.1. Separable initial states

Let us first consider in detail the simple case of an initial state localized at the origin
(x = y = 0) with initial coin state |χ〉 = |L,L〉, or c1 = 1 and cj = 0 for j �= 1. For a
localized state, ã(k) = 1 and the projection on k-space, equation (15), is simply |ψk〉 = |χ〉.
Thus in this case, equation (17) reduces to |F(ωk)|2 = 2(1 − cos(2ωk)). This expression is
used in equation (14) to find

P1,1(k) = 1

	k

(cos2 kx + 4 cos ky cos kx + cos2 ky + 3). (21)

After averaging over k, the matrix element of the reduced density operator is obtained:

ρ̂c(1, 1) =
∫

d2k
4π2

P1,1(k) ≡ C1 = 9 − 4
√

2

8
. (22)

The other independent elements of ρ̂c may be calculated in the same form:

ρ̂c(1, 2) = ρ̂c(1, 3) ≡ C2 = 5−3
√

2
8 ,

ρ̂c(1, 4) = ρ̂c(2, 3) ≡ C3 = 3−2
√

2
8 ,

(23)
ρ̂c(2, 2) = ρ̂c(3, 3) ≡ C4 = 2

√
2−1
8 ,

ρ̂c(2, 4) = ρ̂c(3, 4) ≡ C5 =
√

2−1
8 .

The eigenvalues for ρ̂c are λ1 = 1/2, λ2 = 4C3 and λ3 = λ4 = 4C5, so that the asymptotic
entropy of entanglement for this case is E = −trace(ρ̂c log2 ρ̂c) � 1.744. This quantity can
be compared to the asymptotic entanglement of a 1D Hadamard walk that starts at the origin
with |L〉 (or |R〉) as the initial coin. The asymptotic CPE for these cases has been calculated
in [21, 31] as E0 � 0.872. Thus, for |L,L〉 we obtain exactly double CPE as in the 1D case.
This is due to the fact that both the initial coin state and the coin operation H ⊗H are separable
and the QW on the plane decomposes into two independent 1D walks. An additivity property
applies for asymptotic CPE of separable walks, as we discuss in more detail below.

Let us suppose that the initial state is separable with respect to both walkers, i.e.

|�〉 = |�1〉 ⊗ |�2〉, (24)

where |�i〉 = |φi〉 ⊗ |χi〉 for i = 1, 2. The states |φi〉, spanned by {|x〉}, describe initial
positions and the states |χi〉, spanned by {|L〉, |R〉}, are one-qubit initial coin states. If the coin
operation can be written as a product two one-qubit operators, UC = UC1 ⊗ UC2, the evolution
operator U defined in equation (3) is separable, U = Ux ⊗ Uy , with Ux = Sx · (Ix ⊗ UC1)

and a similar expression for Uy. Then, the separability of the initial state is preserved by the
evolution. After n steps, the state vector can be expressed as

|�〉 = Un
x |�1(0)〉 ⊗ Un

y |�2(0)〉, (25)

6
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and the reduced density operator

ρc = traceP (|�〉〈�|) = ρC1 ⊗ ρC2 (26)

is also separable, with ρC1 = tracex (|�1〉〈�1|) and a similar expression for ρC2. The
subadditivity property of the von Neumann entropy for a separable density operator [35]
implies

E(ρC1 ⊗ ρC2) = E(ρC1) + E(ρC2). (27)

In other words, for a separable initial state and separable coin operation, the CPE for a 2D
QW can be obtained from the CPE of the underlying 1D QW.

One can use this property as a witness of correctness of our method for the 2D case. Let
us consider a localized initial position with a generic separable initial coin state:

|�(0)〉 = |0, 0〉 ⊗ |χ1(θ1, φ1)〉 ⊗ |χ2(θ2, φ2)〉, (28)

where |χj 〉 = cos θj |L〉 + eiφj sin θj |R〉 for j = 1, 2 are generic one-qubit states. The four
real parameters that specify this initial state are restricted to the intervals θj ∈ [−π/2, π/2]
and φj ∈ [−π, π ].

According to equation (27), the asymptotic CPE in this case can be computed from the
CPE of a 1D QW with initial condition |�1(0)〉 = |0〉 ⊗ |χ1(θ, φ)〉. As mentioned before, for
this case an exact expression for the CPE has been obtained in [31], in terms of the initial coin
state and the quantity

λ(θ, φ) = 1
2

[
1 +

(
1 − 4(	0 − 2b2

1 sin 4θ cos φ)
) 1

2
]
. (29)

The constants in this expression are 	0 = (
√

2−1)/2 and b1 = (2−√
2)/4 and the asymptotic

CPE for this 1D, localized case is given by [31]

E1(θ, φ) = −λ log2 λ − (1 − λ) log2(1 − λ). (30)

Using additivity, one can obtain the CPE for localized, separable initial conditions
(equation (28)) from this expression as

E(θ1, φ1; θ2, φ2) = E1(θ1, φ1) + E1(θ2, φ2). (31)

The rhs of this equation can be evaluated using equations (30) and (29) and the lhs can be
evaluated as described in the last section. Thus, equation (31), which applies to separable
localized initial conditions only, is a useful witness for the correctness of the proposed method.

We shall now discuss some specific examples of the CPE dependence on the initial
coin state. Let us consider a particular instance of equation (28) with θ1 = 0 and rename
(θ2, φ2) → (θ, φ), so that the initial separable coin state is

|χ(I)(θ, φ)〉 ≡ |L〉 ⊗ (cos θ |L〉 + eiφ sin θ |R〉). (32)

For these states a simple calculation based on equation (17) leads to

|F |2 = |α1|2 cos2 θ + |α2|2 sin2 θ + sin(2θ)�(α∗
1α2e−iφ).

This expression is used in equation (14) to evaluate Pij (k). After averaging in k-space, the
dependence of the asymptotic reduced density operator on the initial state parameters can be
expressed in terms of the functions

h(θ, φ) ≡ sin(2θ) cos φ,

f (θ, φ) ≡ h(θ, φ) + cos(2θ) + 1, (33)

g(θ, φ) ≡ f (θ, φ) − i
√

2 sin φ sin(2θ) − 1,

7
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θ

φ

−π/2 −π/4 0 π/4 π/2
−π

−π/2

0

π/2

π

1.609

1.65

1.69

1.74

1.79

1.83

1.872

Figure 1. Left: asymptotic entropy of entanglement (CPE), E(θ, φ), for a localized separable
initial state, equation (28), with the particular initial coin state defined in equation (32). Right:
contour plot of the same surface.

and the constants Ci defined in equations (22) and (23). The explicit form of the reduced
density matrix is

ρ̂c =

⎛
⎜⎜⎝

C4 + C2f C2g C5 + C3f C3g

C2g
∗ C1 − C2f C3g

∗ C2 − C3f

C5 + C3f C3g
1
8 + C5f C5g

C3g
∗ C2 − C3f C5g

∗ C4 − C5f

⎞
⎟⎟⎠ .

The exact diagonalization of this operator leads to the asymptotic entanglement as a function
of the initial parameters, E(θ, φ). Figure 1 shows the entropy of entanglement as a function
of the initial coin state defined in equation (32). Alternatively, the surface shown in figure 1
can also be calculated from the rhs of equation (31),

E(θ, φ) = E0 + E1(θ, φ) (34)

with E1 given by equation (30) and E0 = E1(0, φ) � 0.872.
In figure 2 we show the CPE for the case in which both initial coin states are superposition

states. We have set φ1 = φ2 = 0 in equation (28) and calculated E(θ1, θ2) by following the
method outlined in the previous section. The result is consistent with the additivity property,
equation (31).

The previous argument, based on the separability of the motion, may be extended to any
number N � 2 of quantum walkers with a separable initial state, |�(0)〉 = |�1(0)〉 ⊗ . . . ⊗
|�N(0)〉, evolving under a separable coin operation, UC = A1 ⊗ . . .⊗AN . Then, the CPE can
be obtained by addition of the corresponding 1D CPE’s, E(�(0)) = ∑N

i=1 E1(�i(0)). The
maximum entanglement of E = N can be obtained of all initial states are properly prepared.

3.2. Entangled initial states

Up to this point we have discussed separable initial states only. Let us now discuss the effect on
CPE of initially entangled states. Strict subadditivity of the von Neumann entropy holds only

8



J. Phys. A: Math. Theor. 43 (2010) 075301 M Annabestani et al

θ
1

θ
2

−π/2 −π/4 0 π/4 π/2
−π/2

−π/4

0

π/4

π/2

1.472

1.6

1.7

1.8

1.9

2

Figure 2. Contour plot for the CPE, E(θ1, θ2), obtained from the initial separable state
equation (28), with φ1 = φ2 = 0.

for separable density operators, so in this case CPE cannot be obtained from 1D calculations.
Let us start with localized states

|�(0)〉 = |00〉 ⊗ |χ〉 (35)

and consider two families of initial coin states,

|χ(II)〉 ≡ cos θ |L,R〉 + eiφ sin θ |R,L〉, (36)

|χ(III)〉 ≡ cos θ |L,L〉 + eiφ sin θ |R,R〉 (37)

which describe entangled states in HC . Their entropy of entanglement is defined as

S ≡ −trace1[(|χ〉〈χ |) log2(|χ〉〈χ |)], (38)

with the partial trace taken over either of the one-qubit coin subspaces spanned by {|L〉, |R〉}.
This quantity is normalized to one and measures the initial coin–coin entanglement (CCE)
in |χ〉. As shown in figure 4(b), it depends on the parameter θ alone. Note that, since the
coin operation UC = H ⊗ H is separable, the initial CCE is preserved by the evolution. In
particular, the maximally entangled Bell states

|�±〉 ≡ 1√
2
(|L,R〉 ± |R,L〉), (39)

|±〉 ≡ 1√
2
(|L,L〉 ± |R,R〉), (40)

included in these families, appear associated with the maximum or minimum asymptotic CPE
values. For the first family, |χ(II)〉, straightforward evaluation of equation (17) leads to

|F |2 = |α2|2 cos2 θ + |α3|2 sin2 θ + sin(2θ) �[α∗
2α3 e−iφ].

A similar expression holds for |χ(III)〉 with (α2, α3) replaced by (α1, α4). These expressions
are used in equation (14) to obtain the elements of the hermitic matrix P(k). After the k-
average is done, the long-time reduced density operator ρ̂c is obtained. For |χ(II)〉, ρ̂c has
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Figure 3. Asymptotic entropy of entanglement resulting from entangled initial coin states. Left:
initial coin in the family |χ(II)〉 defined in equation (36). Right: initial coin in the family |χ(III)〉,
defined in equation (37).

seven independent elements which can be expressed in terms of the constants Ci and the
functions h, f, g defined in equations (33), as

ρ̂c(1, 1) = ρ̂c(4, 4) = C4 + C3h,

ρ̂c(2, 2) = C3(f − 2h) + 1
8 (f − h + 1),

ρ̂c(3, 3) = −C3f + 1
8 (h − f ) + C1, (41)

ρ̂c(1, 2) = −ρ̂∗
c (2, 4) = C3(g

∗ + 1) − C2(f − h) + C5,

ρ̂c(1, 3) = −ρ̂∗
c (3, 4) = C3(g + 1) + C5(f − h) − C2,

ρ̂c(1, 4) = −C3(h + 1),

ρ̂c(2, 3) = [3(h − 1) + 2(f − g∗)].

Similar expressions are obtained for the other entangled family, |χ(III)〉. After diagonalization
of ρ̂c, an exact expression for the asymptotic CPE E is obtained. For both cases, the dependence
of this quantity on the initial coin state parameters (θ, φ) is shown in figure 3. It varies in
the (approximate) range [1.744, 1.978], with its minimum associated to separable initial coin
states and its maximum associated to fully entangled initial coin states. Asymptotic CPE and
initial CCE are related in the sense that the maximum CPE is associated with the maximum
CCE while the minimum CPE is associated with initial product states (i.e. no CCE). However,
the maximum initial CCE does not imply the maximum asymptotic CPE; for the family
χ(II), the maximum CPE is obtained from the Bell state |�+〉, but |�−〉, also fully
entangled, leads to the intermediate CPE value E � 1.888, see the lhs of figure 3. For
the symmetric family χ(III), the same values are obtained but in this case |−〉 yields
the maximum entanglement and |+〉 leads to an intermediate value E � 1.888, see the
rhs of figure 3. A comparison between both panels in figure 3 shows that the relation
E(χ(III); θ, φ) = E(χ(II);−θ, φ) is satisfied. From a mathematical point of view, this may
be traced to the fact that the reduced density operators ρc(χ

(III ); θ, φ) and ρc(χ
(II);−θ, φ)

have the same eigenvalues. We also note that both initial coins have the same CCE, as indicated
by S(θ), which is an even function (see figure 4(b)).

Up to this point, only localized initial conditions have been considered. In the 1D case, it
is known that the non-local initial states can modify significantly the dynamics of the QW. For
instance, the survival probability (the probability of finding the walker in a given region which
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(b) CCE

Figure 4. (a) Asymptotic CPE, E(θ, φ), for the families of initial coin states |χ(II)〉 (red, dashed
line) and |χ(III)〉 (blue, full line). (b) Initial CCE S(θ), defined in equation (38), for the same
families of states.

includes the starting point) decays as t−1 for localized initial states and as t−3 for non-local
initial states with appropriate relative phases [36], so the probability flux spreads out faster
than in the localized case. In the specific case of asymptotic CPE, previous work for a 1D QW
suggests that non-local initial states can give rise to a broader range of variation for CPE levels
[31]. However, this initial work was limited in scope because the 1D case does not allow for
initially entangled (coin or position) states as the 2D case does. We now consider initial states
of the form

|�(0)〉 = |ψ(α, β)〉 ⊗ |χ〉, (42)

where the coin state |χ〉 is chosen within the family |χ(II)〉 as either one of the Bell states
|χ〉 = |�±〉 defined in equation (39) or the product state |LR〉. The initial position |ψ(α, β)〉 is
a superposition state on the 2D lattice. We start by considering the effects of small non-locality,
with the initial states

|ψs〉 ≡ (cos α| − 1〉x + eiβ sin α|1〉x) ⊗ |0〉y, (43)

|ψe〉 ≡ cos α | − 1, 1〉 + eiβ sin α |1,−1〉, (44)

which describe the non-local separable (ψs) and entangled (ψe) states in HP . In the later case,
the degree of bipartite entanglement (PPE) is given by the entropy of entanglement, S(α),
which can be read from figure 4(b) with the replacement θ → α. In the next subsection we
shall consider the effect of extended non-locality on CPE.

For these non-local initial conditions the Fourier transformed amplitudes, ã(k) =∑
r e−ik·ra(r), must be calculated. The relevant expressions are

|ãs(k)|2 = 1 + sin(2α) cos(2kx + β)

|ãe(k)|2 = 1 + sin(2α) cos[2(kx − ky) + β].
(45)

The calculation of the reduced density operator is simplified by noting that equations (14) and
(17) imply

P ′(k) = |ã(k)|2P(k). (46)

Thus, the matrix P ′(k) for the non-local case is expressed in terms of the corresponding matrix
P(k) for the local case with the same initial coin state. The corresponding density operators

11
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are obtained from integration in k-space of the P(k) previously calculated for the local case,
with integrating factors given by equations (45),

ρ̂c =
∫

d2k
4π2

|ã(k)|2P(k). (47)

Diagonalization of this operator leads to the corresponding asymptotic entropy of
entanglement, E(χ;α, β), which depends on the initial coin state and the two parameters
that specify the initial position.

A comparison of the resulting CPE surfaces E(α, β) with the corresponding localized
cases, values of E show, in most cases, variations due to position non-locality. The results for
separable non-locality (ψs) are shown in figure 5 and those for entangled non-locality, (ψe), in
figure 5. The flat surfaces represent the CPE of the localized cases with the same initial coin
states. The largest variations due to non-locality are associated to balanced superpositions,
α = ±π/4. Note that the relative phase of the initial coin state can cause significant changes
in CPE. The overall effect of this restricted non-locality on CPE is small, but this was to be
expected since we are considering only small delocalizations about the origin. In the next
section, we consider the effect on CPE of non-local states with a large spread over the 2D
lattice.

3.3. Extended non-locality

We have considered initial position states with a small degree of non-locality, i.e. the initial
amplitudes that are non-zero only in a few sites around the origin and found that the changes
in asymptotic CPE due to initial non-zero amplitudes at sites x = ±1 or y = ±1 as compared
with the local case x = y = 0 are small. However, is more extended non-locality capable
of significant changes on the long-time CPE? Let us approach this question, considering an
isotropic Gaussian position distribution for the amplitudes, a(r) ∝ e−(x2+y2)/2σ 2

, where σ > 0
is a characteristic width. The Fourier-transformed amplitudes are ã(k) = C e− 1

2 (k2
x+k2

y )σ
2

with
C a constant obtained from the normalization condition

∫
d2k
4π

|ã(k)|2 = 1. Since

lim
σ→∞ e− 1

2 (k2
x+k2

y )σ
2 = π

σ 2
δ(kx)δ(ky),

where δ(·) is a Dirac’s delta function, extended non-locality in position transforms the
integration factor |ã(k)|2 in a product of two delta functions and, in this limit, the integration
in equation (47) becomes trivial. The resulting reduced density operator is

ρ̂c(i, j) =
[∑

ωk

|F(ωk)|2 αi(ωk)α
∗
j (ωk)

]
kx=ky=0

. (48)

Thus, for the extended position distribution, the asymptotic CPE depends only on the
initial coin state which determines |F |2. Let us choose the initial coin state within the family
of entangled states χ(II)(θ, φ), defined by equation (36). In this case, the elements of the long-
time reduced density operator, ρ̂c, result from evaluating the expressions for P(k) obtained in
the localized case, for kx = ky = 0. The result can be expressed in simple form. The diagonal
elements are

ρ̂c(1, 1) = (sin(2θ) cos φ + 3)/16,

ρ̂c(2, 2) = (1 − sin(2θ) cos φ + 8 cos2 θ)/16,

ρ̂c(3, 3) = (9 − sin(2θ) cos φ − 8 cos2 θ)/16,

ρ̂c(4, 4) = (3 + sin(2θ) cos φ)/16,

12
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Left: asymptotic entropy of entanglement E for the non-local separable initial condition
ψs(α, β), equation (43), with non-locality restricted to the x-direction. The surfaces correspond to
different initial coin states: (a) |�+〉, (b) |LR〉 and (c) |�−〉, defined in equation (39). In each case,
the flat surface indicates the CPE level for a localized initial position with the same initial coin
state. Right: asymptotic entropy of entanglement E for the non-local entangled initial condition
ψe(α, β), equation (44) and the same initial coin states. In each case, the flat surface indicates the
CPE level for a localized initial position with the same initial coin state.

with trace (ρc) = 1, as expected. The expressions for the off-diagonal elements are

ρ̂c(1, 2) = (1 − 4 cos2 θ + sin(2θ) cos φ)/16,

ρ̂c(1, 3) = (−3 + sin(2θ) cos φ + 4 cos2 θ)/16,
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Figure 6. Left: contour plot for E(θ, φ) for the initial coin χ(II)(θ, φ) defined in equation (36)
and initial position uniformly distributed over the plane. Right: constant φ sections for the same
surface.

ρ̂c(1, 4) = (−1 + sin(2θ) cos φ)/16,

ρ̂c(2, 3) = (−1 + sin(2θ) cos φ)/16,

ρ̂c(2, 4) = (−1 − sin(2θ) cos φ + 4 cos2 θ)/16,

ρ̂c(3, 4) = (3 − sin(2θ) cos φ − 4 cos2 θ)/16.

The eigenvalues of this operator can be obtained analytically and the entropy of entanglement
calculated as a function of the initial coin state. The resulting surface, E(θ, φ), is shown in the
lhs of figure 6. Two aspects of this surface are remarkable: (i) full asymptotic entanglement
Emax = 2 results for the initial coin |�+〉. Note that this maximum is basically flat in the
φ direction, so it is robust against small variations in the relative phase of the initial coin
state. And (ii) the minimum entanglement is now (exactly) Emin = 1 for the initial coin
|�−〉, as shown in the rhs of figure 6. Finally, the initial product state |L,R〉 results in a
low CPE level of E � 1.20. Comparison with the local case in figure 3 shows that extended
non-locality increases significantly the range of variation for asymptotic CPE. This result also
contextualizes the small variations in CPE due to initial non-local positions in the neighborhood
of the origin, as the variations may be larger when more extended initial states in position
space are considered.

4. Summary and conclusions

This work describes a method for the exact characterization of the long-time (asymptotic)
coin-position entanglement (CPE) of a discrete-time QW on a 2D lattice or, alternatively, of
two independent walkers on a line. In order to quantify the bipartite entanglement of the
pure state ρ, the von Neumann entropy of the reduced density operator, ρc is used. This
quantity, E(ρc), is scaled so that it varies between 0 for a product coin-position state and
2 for a fully entangled state. This corresponds to the [0, 1] variation of the 1D case. The
initial condition is always chosen as a coin-position product state, so that no CPE is initially
present. With this sole restriction, the general formalism leading to the exact calculation of
the long-time reduced density operator is presented. This treatment allows both local and
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non-local initial positions and arbitrary coin operations. The expressions we have presented
can be readily applied to quantify the CPE of quantum walks in higher dimensions, such as
the n-dimensional hypercube [25, 26]. The exact nature of our results allow us to distinguish
between small variations in CPE and, for instance, clearly identify initial states which lead to
full entanglement.

In order to illustrate the kind of results that can be obtained, we have considered in detail
the case of a Hadamard coin operation, UC = H ⊗ H . Similar calculations can be done for
any coin operation (i.e. Grover or DFT coins) for which the relevant eigenproblem in k-space
has been solved. We have first considered the case of localized positions with separable
initial coin states. Then each walker starts in well-defined states in the coin and position
subspaces and the motion under a Hadamard coin remains separable. In this case, the CPE
satisfies an additivity property which allows it to be expressed as the sum of the CPE for
the corresponding 1D motions. This additivity property can be generalized to the case of N
independent walkers with the separable initial condition and coin operation. The CPE obtained
is rather high, above 73% of the maximum value in all the cases considered, except for the
extended non-locality discussed below. The maximum CPE depends on whether one can tune
both initial coins or not. If both coins are tunable, the maximum possible CPE, E = 2, can be
obtained.

When entangled initial coin or position states are considered, the motion is no longer
separable and the calculation of CPE cannot be reduced to the 1D case. In this case, there is
the coin–coin entanglement (CCE) present in the initial state and the long-time CPE generated
by the evolution. These are new results, as previous analytical work based on 1D walks
[31] did not consider this possibility. Extreme values for CPE (maxima or minima) appear
associated with maximum values of CCE. Asymptotic CPE and initial CCE are related in
the sense that the maximum CPE implies a maximally entangled (CCE) initial coin state and
the minimum CPE implies an initial product state (i.e. no CCE). However, the relation is not
clear cut, as there are maximally entangled initial coins which do not lead to the maximum
CPE and the relative phase of the entangled pair must be tuned to obtain the maximum
CPE.

We have also considered the effect of non-local initial conditions. The calculation of the
asymptotic density operator for this case can be reduced to that of the local case with the
same initial coin state, with an additional integration factor included in the final step. Initial
superpositions of two close sites can produce small changes in CPE (smaller than 1%) with
respect to the localized case. However, when extended non-local states are considered, large
variations of CPE with respect to the local case may be obtained. We have investigated an
initial state with Gaussian amplitude distribution about the origin. In the uniform limit, the
variation for CPE is large. Values between E = 1 and E = 2 can be obtained depending on
the initial coin state.

Many studies of entanglement are restricted to the few-qubit case. The 2D QW involves
a two-qubit coin subspace and a position register which must have several qubits in order to
accommodate the evolution during a significant number of steps. Thus, the entanglement in
these systems is a complex issue, involving different kinds of bipartite entanglement (some of
which we code-named as CCE, PPE or CPE). The analytical results presented here are a step
towards a better understanding of the dynamics of entanglement in QW. The relation between
the asymptotic CPE and the initial state is important, for instance, in order to gain insight
on how a partial measurement will affect the walk. It also allows one to choose the initial
conditions that will lead to the desired entanglement level. Entanglement is a key resource for
quantum information processing, so we hope that these and similar results may stimulate new
algorithmic applications.
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